Digital Input Signals and Computer Input Data Worksheet Digital Card Setup

Project Number Sample Digital Configuration

Date: Client:

Unit Number: #1 Digital Channels for Pulse Metering and Monitoring

Channel	Default Voltage	Digital Signal		Parameter	Pulse	Pulse / Watt	Description On	Description Off	Alarm	Alarm
Number	Range	"On" Voltage	"Off" Voltage	Displayed Name	Reading	Conversion	"1" or "On"	"0" or "Off"	Delay	Condition
	Note 1	Note 2	Note 3	Note 4			Note 5	Note 6	Note 7	Note 8
1	0 or +5VDC	Pulse	Pulse	Electric Submeter	Yes	1.8	N/A	N/A	N/A	None
				Power Consumption						
2	0 or +5VDC	Pulse	Pulse	Gas Submeter	Yes	2.5	N/A	N/A	N/A	None
				Power Consumption						
3	0 or +5VDC	Pulse	Pulse	Water Submeter	Yes	3.5	N/A	N/A	N/A	None
				Power Consumption						
4	0 or +5VDC	+ 5 VDC	0	Back Door Status	N/A	N/A	Open	Closed	0	On
5	0 or +5VDC	+ 5 VDC	0	Roof Door Status	N/A	N/A	Open	Closed	0	On
6	0 or +5VDC						N/A	N/A	N/A	None
7	0 or +5VDC						N/A	N/A	N/A	None
8	0 or +5VDC						N/A	N/A	N/A	None

Notes:

- 1. An input voltage level of 0 to 1.5 VDC will be interpreted as a logical zero and a +3.5 to +5.0 VDC will be interpreted as a logical one.
- 2. Define the desired digital signal parameter zero or low input. This input may require additional signal conditioning to convert it to 0 VDC for the EMS2000 Digital monitor.
- 3. Define the desired digital signal parameter one or high input. This input may require additional signal conditioning to convert it to +5VDC for the EMS2000 Digital monitor.
- 4. The Parameter displayed name refers to the text description that will be displayed on the PC computer in the EMS2000 program and will correspond to the channel number.
- 5. The Description On defines the text to be displayed on the PC computer for a logical one or On digital signal.
- 6. The Description Off defines the text to be displayed on the PC computer for a logical zero or Off digital signal.
- 7. The Alarm Delay prevents alarms from being generated until the alarm condition persists for the alarm delay period. The alarm delay may be set from 1 to 255 minutes.
- 8. The Alarm Condition setup defines what conditions an alarm is generated. There are three options to select from as defined below: An alarm will be generated when the input voltage is equal to the Alarm Condition (logical zero or one). If the parameter digital signal is for monitoring only, an no alarms are to generated, select the "NONE" alarm condition. If the parameter digital signal is to alarm on a logical "1" or On condition, select the "ON Only" alarm condition. If the parameter digital signal is to alarm on a logical "0" or Off condition, select the "OFF Only" alarm condition.

Analog Input Signals and Computer Input Data Worksheet Analog Card Setup

Project Number Sample Analog Channel Setup

Date:_____ Client:_____ Unit Number: #1 Analog Channels

Channel	Temperature	Measured Parameter			Parameter	Units	Low Alarm	High Alarm	Alarm Delay	Alarm Condition	Conversion Low	Conversion High
Number	Range	Low Input Signal	High Input Signal	Ground Reference	Displayed Name	Displayed Units	Level	Level	Minutes	Setup	Setup	Setup
	Note 1				Note 2	Note 3	Note 4	Note 5	Note 6	Note 7	Note 8	Note 9
1	Type 1	0	+5 VDC	+0 VDC	Ambient Temperature	Deg F	N/A	N/A	10	None	15	220
2	Type 2	0	+5 VDC	N/A	Walk-In Freezer	Deg F	-30	-10	10	High	-40	40
3	Type 3	0	+5 VDC	N/A	Reach-In Refrigerator	Deg F	-30	-10	10	High	-40	40
4	Type 3	0	+5 VDC	N/A	Walk-In Cooler	Deg F	20	40	10	High	0	50
5	Type 3	0	+5 VDC	N/A	Ref. Makeup Table	Deg F	20	40	10	High	0	50
6	Туре 3	0	+5 VDC	N/A	Ref. Salad Bar	Deg F	20	40	10	High	0	50
7		0.5	+4.5 VDC	+0 VDC	Cmp Manifold Suction Pressure Refrigeration Rack M-3	PSIG	N/A	N/A	10	None	-25	225
8		0.5	+4.5 VDC	+0 VDC	Cmp Manifold Discharge Pressure Refrigeration Rack M-3	PSIG	N/A	N/A	10	None	-62.5	562.5

Notes:

- The A/D will interpret 0VDC input as bit count 00 and will interpret +5VDC input as bit count 255. Type 0 = No Conversion of A/D Data Type 1 = 0 to 170 DegF (Use 4300 Ohm Resistor) Type 2 = -40 to +40 DegF (Use 68000 Ohm Resistor) Type 3 = 0 to 50 DegF (Use 36500 Ohm Resistor)
- 2. The Parameter displayed name refers to the text description that will be displayed on the PC computer in the EMS2000 program and will correspond to the channel setup.
- 3. The Units refers to the "engineering" units of measure such as Degrees F that will be displayed on the PC computer in the EMS2000 program .
- 4. The Low Alarm Level input is used to define for the EMS2000 program the low signal level which will activiate the the low alarm condition. The input should be made in degrees F.
- The High Alarm Level input is used to define for the EMS2000 program the high signal level which will activiate the the high alarm condition. The input should be made in degrees F.
- 6. The Alarm Delay is the time delay which prevents alarms from being generated until the alarm condition persists for the alarm delay period. The alarm delay may be set from 1 to 255 minutes.
- 7. The Alarm Condition setup defines what conditions an alarm is generated. There are four options to select from as defined below:

If the temperature parameter is to be monitored only, and no alarms are to be generated, select the "None" alarm condition. If the temperature parameter is to generate an alarm on a Low Alarm Condition only, select the "Low Only" alarm condition. If the temperature parameter is to generate an alarm on a High Alarm Condition only, select the "High Only" alarm condition. If the temperature parameter is to generate an alarm for either a Low or High Alarm Condition, select the "Both" alarm condition.

- 8. The Conversion Low setup is used to define for the EMS2000 program the conversion factor to equate a +0 VDC input to the actual Low Input Signal in the engineering Units which will be displayed by the program. Use to low and high values associated with the Temperature Type.
- The Conversion High setup is used to define for the EMS2000 program the conversion factor to equate a +5 VDC input to the actual High Input Signal in the engineering Units which will be displayed by the program. Use to low and high values associated with the Temperature Type.